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[11 The relations between monthly-seasonal soil moisture and precipitation variability are
investigated by identifying the coupled patterns of the two hydrological fields using
singular value decomposition (SVD). SVD is a technique of principal component analysis
similar to empirical orthogonal functions (EOF). However, it is applied to two variables
simultaneously and is capable of extracting spatial patterns of one variable which are
closely connected to variability of the other. Simulation is performed with a regional
climate model to reproduce soil moisture and precipitation in east Asia. It is found that, of
a number of leading soil moisture SVD patterns, those representing meridional anomalies

have closer relationships to subsequent precipitation variability. The corresponding
atmospheric variability is characterized by opposite anomalies between the middle and
low troposphere and by comparable anomalies between the middle and low latitudes.
These patterns occur more frequently during spring and summer. The time lag correlations
of the SVD expansion series with soil moisture leading precipitation are much greater
than those of the original data series and EOF expansion series, suggesting that
predictability of monthly-seasonal precipitation variability could be improved by using

soil moisture in the form of its coupled SVD patterns with precipitation.
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1. Introduction

[2] Soil moisture controls water and energy exchanges by
providing available water for evapotranspiration and by
determining the partition of radiative energy absorbed on
the ground surface into sensible and latent heat fluxes
[Avissar, 1995]. Therefore anomalies in soil moisture can
result in significant changes in atmospheric hydrological and
thermal processes by land-atmospheric interactions. A large
number of studies have indicated the importance of soil
moisture in weather and climate anomalies [e.g., Mintz,
1984; Dickinson and Henderson-Sellers, 1988; Avissar and
Verstraete, 1990; Koster and Suarez, 1995, Betts et al., 1996;
Avissar and Liu, 1996].

[3] An important property of soil moisture is the capacity
to retain anomalous signals over long periods. Anomalies in
soil moisture can persist from months to seasons [e.g.,
Delworth and Manabe, 1988, 1989; Vinnikov et al., 1996,
Liu and Avissar, 1999a, 1999b]. As aresult, soil moisture can
contribute to long-term atmospheric variability over land by
passing its relatively slow anomalous signals to the atmo-
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sphere. Some relationships have been obtained between soil
moisture with subsequent monthly-seasonal variability in air
temperature and other atmospheric variables at the surface
[e.g., Karl, 1986; Huang et al., 1996; Wang and Kumar,
1998].

[4] Regional climate models (RCMs), first developed at
the National Center for Atmospheric Research (NCAR) in
the late 1980s [e.g., Giorgi and Bates, 1989; Dickinson et al.,
1989], have emerged as an important tool for investigating
the relationships of soil moisture to regional weather and
climate anomalies, including severe floods and droughts.
Giorgi et al. [1996] investigated the role of soil moisture-
rainfall feedback in the 1988 drought and the 1993 flood in
the midwest United States. Hong and Pan [2000) and Pal and
Eltahir [2001] further examined the two events and proposed
different mechanisms. Bosilovich and Sun [1999] examined
the 1993 flood in the midwest United States and pointed out
that the changed moisture convergence within the flood
region, connected to the change in the low-level jet induced
by soil moisture anomalies, was a major mechanism for the
rainfall increase. Schar et al. [1999] found a similar mech-
anism in simulations over Europe. Liu et al. [1996] modeled
the 1991 flood event in central China with the NCAR
regional climate model (RegCM). Seth and Giorgi [1998]
further examined the effects of domain choice on the simu-
lations reported in the work of Giorgi et al. [1996] and
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showed that a smaller domain captured observed precipita-
tion better in the upper Mississippi basin but the sensitivity of
precipitation to initial soil moisture appears to be more
realistic in a larger domain. Giorgi and Bi [2000] investigated
internal variability and showed that perturbations grow in the
first 5—15 days but do not continue to diverge.

[s] Understanding of the importance of soil moisture to
precipitation variability has been an objective of a number of
research programs and activities. A great effort has been
made as part of the Global Energy and Water Cycle Exper-
iment (GEWEX) to conduct field measurements and to
develop models for studying soil moisture and its interactions
with the atmospheric processes. An additional goal of the
GEWEX America Prediction Project (GEWEX Americas
Prediction Project (GAPP) Science Plan and Implementation
Strategy, 159 pp., 2000) was to develop and demonstrate a
capability in making reliable monthly and seasonal predic-
tions of precipitation and land-surface hydrologic processes
using soil memory. The National Center for Environmental
Prediction (NCEP) explored the potential to predict summer
precipitation over the United States using the ensemble
canonical correlation technique with soil moisture as one of
the predictors [Mo, 2002].

[6] Because of the extreme complexity in precipitation and
soil moisture variability, and in land-atmosphere interactions,
relations of soil moisture to subsequent precipitation vari-
ability are significant only under certain circumstances.
Various approaches have been applied to identifying such
circumstances. It was found that soil moisture persistence is
more significant in high latitudes, during winter seasons, or in
dry climate regions [Delworth and Manabe, 1988, 1989; Liu
and Avissar, 1999a]. The foreknowledge of land surface
moisture state contributes significantly to predictability in
transition zones between dry and humid climates [Koster et
al., 2000]. A number of feedback mechanisms could retain
and amplify anomaly signals in soil moisture and the atmo-
sphere [e.g., Rodriguez-Iturbe et al., 1991; Entekhabi et al.,
1992; Brubaker and Entekhabi, 1996; Findell and Eltahir,
1997; Eltahir, 1998; Liu and Avissar, 1999b]. Recent obser-
vational analyses of soil moisture measurements determined
a spatial scale, at which interactions between soil moisture
and the large-scale atmospheric processes become important
[Entin et al., 2000; Liu et al., 2001].

[7] This study examines the circumstances by identifying
the spatial patterns of soil moisture which are closely
connected to monthly-seasonal precipitation variability. A
regional climate model is used to simulate the land-atmo-
spheric system of east Asia, the location of one of the
GEWEX study areas (GEWEX Asian Monsoon Experiment
or GAME). The simulated soil moisture and precipitation are
analyzed using singular value decomposition (SVD). The
simulation and SVD analysis are first briefly described in the
next section. The leading SVD patterns of soil moisture,
temporal relations, and the significance to prediction of
precipitation variability are presented in the sections 3—5.
Concluding remarks are given in the final section.

2. Methodology
2.1. Simulation

[8] The second version of NCAR RegCM [Giorgi et al.,
1993a, 1993b] with modified explicit rainfall calculation
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Figure 1. Regional model domain and topography. The

contour interval is 500 m.

[Giorgi and Shields, 1999] was used to simulate variations
in the east Asian land-atmospheric system. RegCM charac-
terizes regional features of climate and land-surface pro-
cesses at geographic regions of interest by incorporating
improved schemes of a number of critically important
climate processes, including Biosphere-Atmosphere Trans-
fer Scheme (BATS) land-surface physics [Dickinson et al.,
1993] and the NCAR radiative transfer model [Kiehl et al.,
1996}, into the standard NCAR/Pennsylvania State Univer-
sity Mesoscale Model Version 4 (MM4) [dnthes et al.,
1987]. The Kuo-type subgrid convective scheme [Anthes,
1977] was utilized. The model simulates snow when the
temperature is below 0°C. The rate of change in snow cover
is determined by the balance among the snow precipitation
rate, snowmelting rate and the rate of sublimation. Snow-
melting happens when the snow temperature (the same as
the temperature of the upper layer of soil) is above 0°C.
Snowmelting is estimated from the energy required to
balance the net surface heating and lower the temperature
to 0°C. RegCM was able to reproduce some important high-
resolution spatial characteristics of climate for major geo-
graphic regions over the world, including east Asia [e.g.,
Liu et al., 1996; Lee and Suh, 2000].

[9] Figure 1 shows the simulation domain and topogra-
phy. The Tibetan Plateau stretches into the domain with a
maximum height over 5 km. The domain is centered at
34°N and 116°E. It contains 90 by 79 grid points with a
horizontal resolution of 60 km. There are 14 vertical layers
with the top model atmosphere at 80 hPa. The initial and
horizontal lateral boundary conditions of wind, temperature,
water vapor, and surface pressure were interpolated from the
analysis of the European Center for Medium-Range Weather
Forecast (ECMWEF), whose resolution is 1.875° of latitude
and longitude (roughly 200 by 175 km at midlatitudes). Soil
water content was initialized as described in the work of
Giorgi and Bates [1989], i.e., the initial soil moisture
content depends on the specified type of vegetation.
Time-dependent sea-surface temperature (SST) was inter-
polated from a set of observed, monthly mean with a
resolution of 1° [Shea et al., 1992]. A data set of precipi-
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tation from NCEP was used to validate rainfall simulation.
All these data were obtained from archives of the NCAR
Scientific Computing Division. Land type is specified
based on the global 1-km resolution International Geosphere
Biosphere Program (IGBP) land cover data set [Zeng et al.,
2000]. The integration period is from January 1987 to
December 1997 with a time step of 3 min. The first year is
considered as the spin-up period and, hence, excluded from
the data series used in the SVD analysis. We will refer to the
last 10 years as the simulation period.

[10] A global circulation model (GCM) could be an
alternate tool to produce soil moisture and precipitation
needed for the SVD analysis. A RCM has been used mainly
in the consideration that, with the boundary conditions
updated every 12 hours during the integration period using
“observational data” (actually a combination of observation
data and model outputs), a RCM is expected to produce
relatively realistic regional circulation patterns. In addition,
with a higher horizontal resolution of about 50 km, the
effects of the ground forcing could be better captured by a
RCM.

[11] Giorgi and Mearns [1999] discussed a number of
factors affecting the performance of a RCM simulation,
some of which are especially important to the simulation
performed here. Most of the western boundary of the
domain is over the Tibetan Plateau. This creates difficul-
ties in generating reliable boundary conditions over the
area. Some large errors are expected, mainly for summer
monsoon periods. During winter monsoon periods (Octo-
ber through March), the Euro-Asian westerly, a major
planetary-scale system, is located north to the Plateau.
During the remainder of the year, however, the westerlies
split into two branches, one remaining north of the Plateau
(but much closer than during winter monsoon) and the
other located south of the plateau. The southern branch of
the western system generates synoptic and mesoscale
weather systems. Low-level jets associated with these
systems transport water vapor from the Indian Ocean,
and bring rainfall to the southern and central China. As
indicated in the next section, the model overpredicts the
intensity of the surface low over the Tibetan Plateau and
rainfall in central China, This may be related to the
problem of the Tibetan Plateau being part of the western
boundary. This problem can not be overcome simply by
moving the bound of the domain westward. The Tibetan
Plateau is too large.

[12] Domain size and internal variability created by dis-
turbances in initial and boundary conditions are two other
important issues. Seth and Giorgi [1998] indicated that
RegCM produced more realistic response to internal forcing
with a larger domain, but a better overall simulation with a
small domain. Giorgi and Bi [2000] found that perturbations
in initial and boundary conditions with RegCM grow in the
first 5—15 days but do not continue to diverge. Finally,
because of the need for large computing resources due to
relatively short time step, RCMs, unlike most GCMs,
usually are integrated over a short period up to a few years.
This may adversely impact statistical assessments of simu-
lation results.

[13] No attempts were made to evaluate sensitivity of the
RegCM simulation in this study to these factors. It is
implied from the study by Giorgi and Bi [2000] that the
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effects of internal variability related to initial and boundary
perturbations on the simulation might be limited because of
the long period of integration of the simulation.

2.2. SVD Analysis

[14] SVD is a technique to identify coupled spatial
patterns with the maximum temporal covariance between
two fields. It has been applied to analyzing relations
between sea surface temperature (SST) and a meteorolog-
ical field such as air temperature, precipitation, geopotential
height, or atmospheric heat energy [Wallace et al., 1992;
Ting and Wang, 1997; Wang and Ting, 2000; Trenberth et
al., 2002]. A detailed description of SVD was presented in
the work of Bretherton et al. [1992].

[15] Denote two fields as u(f) = [u(x;, )] and w() =
[v(ys, )], where x; and y; are space locations; k=1, 2, ...,
M, 1=1,2,..., M, and M, and M, are the number of space
locations for # and v, respectively; And ¢ is time from 1 to
N. SVD analysis separates each of the two fields into spatial
patterns and temporal series,

M

u(t) = alp, (1)
k=1
M

v(t) =Y b(t)gy, (2)

where p, and g; are spatial patterns (principal compo-
nents); a;(t) and. by(f) are temporal series (expansion
coefficients); M is the smaller of M, and M,. An SVD
mode is composed of a spatial pattern and its correspond-
ing temporal series.

[16] pi and g, are obtained as the eigenvectors (singular
vectors) of C,,CF, and CLC,,, respectively, where C,, is
the cross covariance of u(f) and v(f). The correlation
between a, and b, has the following feature: Assuming that
the nonnegative eigenvalues (singular values) o, are in
decreasing order (i.e., 0; > o; for { <), then the correlation
between g, and b; is greater than or equal to that of g; and b,
This means that the largest response occurs between the first
pair of spatial patterns, the second largest response between
the second pair, and so on. The first few pairs of modes are
regarded as SVD leading modes.

[17] The contribution of the kth pattern to the total
covariance of the two fields is measured by squared
covariance function (SCF),

M
SCFy =0}/ a}. 3)
f=1

[18] Canonical correlation analysis (CCA) is a similar
and more popular technique to identify coupled patterns of
two fields. Major features are common between SVD and
CCA. SVD was used for this study basically due to the
consideration of SVD’s features in prediction application.
According to Parnston [1994], SVD is favored when a
predictor and a predictand participating in each pattern
linkage are similar to those found in the individual data set
EQF patterns. In this analysis, soil moisture is considered
as a potential predictor for prediction of precipitation
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Figure 2. (a) 500 hPa geopotential height and (b) sea
surface pressure. The solid and dashed lines represent
RegCM simulation and ECMWF data analysis, respectively.
The units are m (Figure 2a) and hPa (Figure 2b), and contour
intervals are 40 m (Figure 2a) and 2.5 hPa (Figure 2b).

(predictand). As shown later, there is similarity between
the SVD patterns of the two fields and their individual
EOF patterns.

[19] The data series used in the SVD analysis are monthly
means of soil moisture and precipitation simulated with
RegCM. The values at every other grid point within the area
of 80~135°E and 18-50°N were used. BATS has three
layers—upper soil, root zone, and total soil. The upper and
total soil layers have the fixed depth of 0.1 and 3 m,
respectively. The depth of root zone varies from 1 to 2 m,
depending on vegetation type of a grid. These three layers
correspond to daily, intra-annual, and interannual processes,
respectively. Soil moisture of root zone was used for the
SVD analysis because monthly-seasonal variability is the
concern of this study. Note that the propertics of soil
moisture seasonal variability, such as, timescales and per-
sistence, vary with depth of soil [e.g., Entin et al., 2000].
BATS has very limited capacity to address this issue
because of its low vertical resolution. Simulation with a
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regional climate model coupled with a multilayer soil model
[e.g., Dai et al, 2003] should provide a solution to this
problem.

3. Spatial Patterns
3.1. Simulated Fields

[20] Before the SVD results are described, a discussion of
the atmospheric circulation and hydrology of east Asia for
the simulation period is first provided. For the convenience
of description, the portion of the analysis area within China
is divided into south (south of 25°N), central (25—35°N),
north (35-42°N), and northeast (42-52°N) China. The first
three regions have humid, semihumid, and semiarid climate,
respectively, and northeast China has semihumid climate.
Mongolia, west to northeast China, belongs to semiarid and
arid climate in its eastern and western portions, respectively.

[21] Figure 2 shows the simulated 500 hPa geopotential
height and sea surface pressure averaged over the simula-
tion period. There are two planetary-scale circulation sys-
tems. One is the east Asian trough in the middle latitudes.
The trough line spreads from northeast southwestward
down to the middle central China. The other is the north-
western Pacific subtropical high. Its center is located south
of 20°N. There are also two systems on the ground: a high
over most part of the domain and a low over the Tibetan
Plateau.

[22] During a normal summer monsoon season from
April to September, the Pacific high gradually moves
northwestward [Ding, 1991]. Water vapor is transported
from the Pacific Ocean to eastern China, Korea, and Japan
by southeasterly flow in the southwestern sector of the high.
Between the high and the midlatitude trough are the
monsoon fronts, which are the major synoptic systems to
produce precipitation. However, the circulation systems
have large variability. Large variance in 500 hPa geopoten-
tial height during the simulation period occurs in the pre-
trough area over Japan, corresponding to the northwest
Pacific storm track (not shown). Another area with large
variance is in western central China, where the mesoscale or
synoptic systems that originate over the Tibetan Plateau
move eastward during summer seasons.

[23] The simulated 500 hPa geopotential height is very
close to the ECMWF data analysis in spite of a little bit
stronger Pacific high. There is a general similarity in the
spatial patterns between the simulated and analyzed sea
surface pressure. However, the magnitude of the low over
the Tibetan Plateau is oversimulated, and the two separate
highs over north China (centered at about 40°N, 115°E) and
north Japan (the upper right comer of the domain) in the
analysis data merge into a stronger single high centered over
the ocean south to Korea in the simulation.

[24] The distributions of precipitation and soil moisture in
China averaged over the simulation period (Figure 3) are
basically in accordance with the climatological regions, as
described above. A large amount of annual rainfall of about
2000 mm over south and central China is produced by the
atmospheric disturbances associated with the east Asian
trough and water vapor transport from the low latitudes.
Rainfall decreases toward north China, which has the
annual amount of only 250 mm. Northeast China, on the
other hand, has more rainfall than north China. Similar to
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Figure 3. (a) Annual rainfall and (b) soil moisture of the
root-zone layer relative to saturation. The solid and dashed
lines represent RegCM simulation and observation, respec-
tively. The units are mm (Figure 3a) and % (Figure 3b), and
the contour intervals are 250 mm (Figure 3a) and 5%
(Figure 3b).

precipitation, soil moisture first decreases from south to
north China, and then increases toward northeast China.
Some centers of over 60% occur in central and northeast
China. The driest area is in the western north China, where
soil moisture is about half of that in the moist areas.

[25] Owing to the direct relation to the east Asian
monsoon, which has large interannual variability, the stan-
dard deviation of annual rainfall is as large as 700 mm,
or one third of the average (not shown). The standard
deviation of soil moisture, on the other hand, is relatively
small, only about 10% of the average in south, central and
northeast China. The smaller ratio of standard deviation of
soil moisture than precipitation may suggest the important
roles of evapotranspiration and runoff in soil moisture
variability. Although soil moisture variations are directly
controlled by rainfall, evapotranspiration and runoff play a
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role in resisting the tendency in soil moisture variations. For
example, a wet (dry) soil will lead to large (small) evapo-
transpiration, which in turn reduces (increases) soil mois-
ture. In addition, the water exchange between root-zone and
deep soil also prevents soil moisture anomalies of root-zone
layer from continuous growth. The smaller ratio may also
suggest less sensitivity of BATS to the forcing from rainfall
variability at the monthly-seasonal scales.

[26] The spatial patterns of the simulated and observed
precipitation are similar to each other. However, there are
two major deficiencies with the simulation: The model
overestimates rainfall over most of the continental, and
the maximum rainfall area shifts northwestward from the
southeastern coastal region. The abnormally strong high in
the simulated sea surface pressure and 500 hPa geopotential
height should be one of the responsible factors.

[27] Entin et al. [2000] and Liu et al. [2001] analyzed
spatial patterns of soil moisture in China. Liu et al. [2001]
used the measurements of top 1-m layer for the period of
19811991, Although continuous distribution was not
available because of the sparse measurement sites, their
results showed large soil moisture over 240 mm in south
China and northeast China, and small soil moisture below
40 mm in the western north China. It seems that the model
is able to reproduce this pattern. As mentioned before, the
root-zone depth varies with vegetation type. To roughly
compare the magnitude with the measurements, the simu-
lated soil moisture of root-zone layer (in mm) is converted
into the equivalent values of a “1-m layer” by dividing the
depth of the root-zone layer. The magnitude of soil moisture
of the “l-m layer” is about 300 mm in south, central, and
northeast China, and about 60 mm in the western north
China. So the simulated magnitude is about 25% more than
that of the measurements in the moist regions. The overes-
timation of soil moisture should be related to the over-
estimated rainfall by the model.

3.2. SVD Patterns

[28] Soil moisture (&) and precipitation (v) of each month
were first normalized by subtracting their respective multi-
year average divided by mean squared root of that month,
which was expected to have a major portion of seasonal
cycle removed. SVD then was applied to the series. Figure 4
shows the first four SVD leading patterns of soil moisture
(pw), which are multiplied by their corresponding singular
value (o;). The Ist soil moisture mode consists of a pair
of positive and negative anomalies separated between
32-35°N. The anomalous regions are basically zonally
oriented. Each region has a size about 30 degrees x 15
degrees, equivalent to the size of about 3000 by 1500 km.
The 2nd mode represents a pattern of more or less merid-
ionally oriented anomalies. There are two areas of negative
anomalies, one spreading from Mongolia and northeast
China down southwestward to central China, and the other
in the western south China. In between are positive anoma-
lies with two centers located in the coastal south China and
the western north China. The size of the anomalies in
Mongolia-northeast China area is comparable to that of
the 1st mode, while that in other regions is reduced by about
half. The 3rd mode is similar to the 2nd mode in terms of its
meridional orientation. However, the negative anomalies in
the north do not spread over Mongolia. The last mode
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Figure 4. The four SVD leading patterns of soil moisture weighted by their corresponding singular
values. SCF stands for squared covariance function. See color version of this figure in the HTML.

contains positive anomalies in most areas, with weak
negative anomalies occurring in the southeastern coastal
area, northeast China, and the western boundary of the
domain.

[29] SCFs of the four modes are about 28, 21, 13, and 8%
(also see Table 1), and the accumulated SCF is about 70%.
Physically, the values shown in Figure 4 represent correla-
tion between soil moisture field and kth SVD expansion
series of precipitation. The critical correlation coefficients,
which are the minimum values for correlations to be
statistically significant at specific confidence levels, are
about 0.3 and 0.23 at the confidence levels of 99.9% and
99%, respectively. The anomaly centers of all the leading
modes except the 3rd one reach the 99% confidence level.
The variance of each of the four SVD expansion coefficient
series accounts for from 6 to 16% of total variance of soil
moisture. The accumulated contribution is about 45%. The
corresponding value for precipitation is smaller with an
accumulated contribution of about 26%. There are close
relationships between each of the corresponding patterns.
The correlation coefficients between soil moisture and
precipitation for each pair of expansion coefficient series
are from 57 to 78%.

[30] The SVD spatial patterns of precipitation (not
shown) are mostly similar to those of soil moisture. This
implies that the closest relations between soil moisture and
precipitation would occur when their anomalous patterns
are similar to each other and that the feedback between soil

moisture and precipitation would be mostly positive at
monthly-seasonal scales. Major differences are the negative
anomalies of the 3rd mode moved up to Mongolia, and the
positive anomalies of the 4th mode extended over a larger
area.

3.3. Corresponding Atmospheric Patterns

[31] Regression analysis is a useful tool for understanding
the physical processes responsible for coupled SVD patterns
[Wang and Ting, 2000]. It was used in this study to find the
corresponding atmospheric patterns to the soil moisture
SVD patterns. Linear regression relations were established
at each location between each of the four SVD leading
modes and the 500 hPa geopotential height or sea level
pressure. Considering the seasonal dependence of the SVD
modes, which will be described in the next section, the
regression analysis was done only for two seasons of a year
when the spatial correlation between soil moisture and an
SVD leading pattern is significant. The chosen seasons are
fall and winter (September through February) for the Ist
mode, and spring and summer (March through August) for
the other modes. Figure 5 shows the regression relations,
expressed by correlation coefficients, between soil moisture
SVD modes and the atmospheric anomalous fields.

[32] For the 500 hPa geopotential height, strong regres-
sion relations for the 1st and 4th SVD modes occur mainly
in middle latitudes, where the atmosphere is controlled by
the east Asian trough. This suggests that variability with the
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Table 1. Statistics of the Four SVD Leading Modes of Soil
Moisture (S) and Precipitation (P)*

Modes SCF, % ag, Y ap, Yo rgp, Yo
1 28.2 13.4 9.1 65.8
2 20.8 10.0 6.4 77.7
3 13.0 15.8 4.7 574
4 8.4 5.8 6.3 65.3

“SCF, o, and rg p represent squared covariance function, variance ratio of
an SVD cxpansion coefficient serics to original data series, and cotrclation
cocfficient of SVD expansion coefficient scrics between S and P,
respectively.

trough would be primarily responsible for the generation of
the two soil moisture SVD modes. The regression relations
for two other modes, on the other hand, are also consider-
able in south and central China, suggesting that variability
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in both the east Asian trough and the mesoscale and
synoptic systems in the lower latitudes would be responsible
for the generation of the two soil moisture modes.

[33] There are two types of vertical variations in the
relations. The anomalies have the same signs between
500 hPa geopotential height and sea surface pressure for
the st and 4th SVD modes. For the 1st mode, the signs of the
regression coefficients are mostly negative at both eleva-
tions. The strongest connections occur over northeast China,
a region with the middle-latitude trough in the atmospheric
field (Figure 2) and extensive positive anomalies in the
SVD pattern (Figure 4). Physically, a positive anomaly in
the geopotential height (sea surface pressure) means a
weaker trough, which leads to reduced precipitation and,
therefore, negative anomalies in soil moisture. In this case,
feedback of soil moisture to precipitation would be
very weak (It will be seen in the next section that the relation
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Figure 5. Regression relations of (left) the anomalous 500 hPa geopotential height and (right) sea
surface pressure with the four SVD leading modes (from top to bottom). The dense and sparse dot
shadings denote values above 10% and below —10%, respectively.
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Figure 6. Time lag correlation coefficients between SVD
expansion series for (left) soil moisture leading precipitation
and (right) precipitation leading soil moisture. (a—d) The
four SVD leading modes and (e) original data. The light line
in each panel indicates the 99.9% confidence level.

of soil moisture to subsequent precipitation variability is
relatively weak for this type of SVD modes). For the 4th
mode, the signs are mostly positive at both elevations,
though the areas with the strongest connections occur over
the western Mongolia in 500 hPa geopotential height, but
over the coastal China in sea surface pressure. For two other
SVD modes, on the other hand, the regression shows
opposite signs between the two elevations in some regions.
For the 2nd mode, the regression coefficients are mostly
negative in 500 hPa geopotential height and positive in sea
surface pressure over the coastal areas; for the 3rd mode, the
regression coefficients in the western north China are mostly
positive in 500 hPa geopotential height and negative in sea
surface pressure, and those in the other areas are mostly
negative in 500 hPa geopotential height and positive in sea
surface pressure.

[34] On the basis of their features of the corresponding
atmospheric patterns, the four leading SVD soil moisture
modes (both spatial patterns and time series) can be divided
into two types. Type | consists of the Ist and 4th soil
moisture SVD modes, whose corresponding atmospheric
anomalous patterns are featured by strong connections in
middle latitudes in the middle troposphere, and by the same
signs of anomalies between the middle and low troposphere;
type Il consists of the 2nd and 3rd modes, whose
corresponding atmospheric patterns are featured by compa-
rable importance between the atmospheric systems in the
middle and low latitudes and by opposite signs between the
middle and low troposphere in some regions.
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[35] Entin et al. [2000] and Liu et al. {2001] used spatial
scale as a criteria to define soil moisture variability types
which have different features in the interactions between soil
moisture and the large-scale atmospheric processes. Here we
category soil moisture variability into different types based
on its spatial patterns and relations to the atmosphere. The
analysis in the next section will show that the two types of soil
moisture patterns have different features in the relations to
subsequent precipitation variability.

4. Temporal Relations

[36] Figure 6 shows time lag correlation coefficients for
the expansion coefficient series of the four leading SVD
modes between soil moisture and precipitation. The corre-
lation for kth series (k = 1, 4) with soil moisture leading

1

precipitation was calculated by the formula > a; (9)

bt + m), with a and b normalized and m the ’fixme lag
length in month. It measures how close an SVD soil
moisture pattern is related to subsequent precipitation var-
iability. The formula for the correlation with precipitation
leading soil moisture is obtained by exchanging a and b.

[37] The correlations for the expansion coefficient series
of type 11 SVD modes are larger than those of type | SVD
modes. For type 1, the correlation coefficients with soil
moisture leading precipitation are significant for the lag
time up to six months at the 99.9% confidence level (the
critical correlation value is 30%). In contrast, those for type
I are only barely significant for the lag time of one month at
the confidence level. This result suggests that soil moisture
could affect the subsequent precipitation at monthly-sea-
sonal scales mainly for type I SVD soil moisture modes.

[38] There are also differences in the connections of
precipitation to its subsequent variability, a measure of
persistence of precipitation anomalies, between the two
types of SVD modes. The persistence means that, if there
are precipitation anomalies in a certain month, it is likely
that the same anomalies would repeat in the following
months. Persistence can be another factor for prediction of
precipitation variability in addition to the relations between
soil moisture and precipitation.

[39] Figure 7 displays the features of the persistence. It
is measured by autocorrelation and calculated by the

—IH

formula >~ ¢ (£) ci(r + m), with ¢ being either normalized

a or b. Ir\réte that both this correlation and the time lag
correlation described in Figure 6 measure relationship at
two different times, but the former is between two varia-
bles, while the later is with one variable. Figure 7 does not
display the coefficients of zero month lag, which always
are 100%. Soil moisture shows strong persistence because
of its long memory, consistent with the previous analyses
[e.g., Delworth and Manabe, 1988, 1989; Vinnikov et al.,
1996; Liu and Avissar, 1999a, 1999b]. The persistence of
precipitation is stronger for type I than type I SVD
modes. The correlation coefficients are significant for time
lags up to five (three) months for the series of the 2nd
(3rd) SVD mode at the 99.9% confidence level. In
contrast, they are not significant for the series of the Ist
and 4th SVD modes except that of the 1st SVD mode with
one-month lag.
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[40] The above results indicate that, among the four
leading SVD modes of soil moisture, only those of type II
have close relationships to subsequent variability of precip-
itation. Some explanations can be obtained based on the
features of their corresponding atmospheric patterns, that is,
opposite signs of anomalies between the middle troposphere
and the surface, and significant anomalies at both middle and
low latitudes. Opposite anomalies between the middle and
low troposphere is mostly generated by abnormal heating or
cooling limited in the low troposphere, whose horizontal
scale is small and life time is short. Thus the feature usually
indicates weak control by an atmospheric system. As a
result, soil moisture plays a relatively important role in
variability of precipitation. In contrast, the same signs of
atmospheric anomalies between the two heights for type |
SVD patterns usually indicate strong control by an atmo-
spheric system throughout entire troposphere. In this case
soil moisture’s role is less significant. The second feature
may reflect a low westerly index, i.e., anomalously strong
planetary-wave activities. This favors the development of
synoptic systems which have small scales and move fast.
Their effects on long-term atmospheric processes are very
limited. As a result, the role of soil moisture becomes
relatively important.

[41] Physical mechanisms responsible for the relation-
ships of soil moisture with subsequent precipitation vari-
ability at monthly and seasonal scales were investigated by
analyzing a numerical experiment with RegCM (Y. Q. Liu,
personal communication, 2002). In the experiment initial
soil moisture in China is specified with its wilting-point
value and RegCM is run from May through August for each
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of the five years (1988-1992). The results suggest two
mechanisms for the effects of the dry spring soil on summer
precipitation. One is reduced water vapor transport from the
surface to the cloud layer, which leads to reduction in large-
scale rainfall. The other is intensified thermal instability due
to more sensible heat flux from the surface, which leads to
increase in convective rainfall. The overall rainfall is
reduced. The first mechanism was found in the simulation
with dry soil conditions in the central United States [Giorgi
et al., 1996]. Other mechanisms have been proposed. For
example, Eltahir [1998] proposed positive feedback mech-
anisms linking soil moisture, PBL moist static energy, and
rainfall. Bosilovich and Sun [1999] and Schar et al. [1999]
found the relations of soil moisture anomalies to the low-
level jet and horizontal water vapor convergence within the
flood region.

[42] Note that, in comparison with precipitation, monthly-
seasonal variability of soil moisture should have much
higher predictability because of much stronger persistence
of soil moisture (Figure 7) and larger correlations with
precipitation leading soil moisture (Figure 6). In addition,
the differences in the relationships of precipitation with
subsequent soil moisture variability and in soil moisture
persistence between the two types of spatial patterns are not
obvious.

4.1. Seasonal Dependence

[43] Both soil moisture memory and the intensity of
land-atmosphere interactions vary with season. The persis-
tence of soil moisture is stronger during winter than
summer seasons [Delworth and Manabe, 1988], while
the effects of soil moisture on precipitation is more
significant during warm than cool seasons because of
larger rate of land-surface water and energy exchanges.
This suggests that the SVD patterns could have different
importance for variability of soil moisture and precipitation
during various seasons of a year. To analyze the seasonal
dependence, spatial correlation coefficients between each
of soil moisture and precipitation and its four leading SVD
patterns are calculated in the following steps: For each of
the 12 months in a certain year, compute spatial correlation
coefficients between soil moisture or precipitation field and
each of its SVD patterns; Repeat the procedure over the
10 years of the simulated period; Then obtain the averages
over the 10 years for each month. The resulits are shown in
Figure 8. The critical correlation value for 99% confidence
level is about 10%.

[44] The spatial correlation coefficients between soil
moisture and the SVD patterns of type Il modes are larger
in spring and summer seasons, indicating more chance for
this type of patterns to appear during the two seasons. This
suggests that the intensity of land-atmosphere interactions
should be a more important factor than persistence for the
development of the SVD soil moisture patterns. On the
other hand, the spatial correlation coefficients between soil
moisture and its 1st SVD pattern are larger in winter and fall
seasons. There is no clear seasonal dependence for the 4th
mode.

[45] The spatial correlation coefficients between precipi-
tation and its SVD patterns have generally similar features
to those of soil moisture. One exception is that the coeffi-
cient for the 2nd mode has no significant seasonal depen-
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Figure 8. Seasonal variations of spatial correlation
coefficients between a field and its four SVD leading
modes (from top to bottom). The heavy and light lines
represent soil moisture and precipitation, respectively.

dence. Another exception is the large correlations coeffi-
cients in summer and fall for the 4th mode.

4.2. Time Evolution

[46] Figure 9 shows the evolution of the SVD expansion
coefficient series over the simulation period. The evolution
is similar between soil moisture and precipitation. Among
various scales with the expansion coefficient of the Ist
mode is one-cycle variation. The negative and positive
values occur during the first and second halves of the
simulation period, respectively. This means that the pattern
of dry anomalies in the southern portion of China and wet
anomalies in the northern portion is dominant during the
first half, while an opposite pattern is dominant in the
second half (refer to Figure 4). The expansion coefficient
for the 2nd soil moisture mode also has one-cycle variation
but with different phase. Negative peak occurs in the
middle, while positive peak occurs in the beginning and
end of the simulation period. The variation may be of
significance for prediction of decade-scale variability. It is
possible that the one-cycle variation is part of a longer
period of variation beyond the simulation period. Causes for
the one-cycle variation need to be investigated for any
possible implications.

[47] The variability of the SVD expansion coefficient
series for the 3rd and 4th modes is more frequent, about
three cycles over the simulation period. The peaks occur
during the years of 1989, 1992, and 1997 for the 3rd mode,
and 1988, 1993, and 1996 for the 4th mode. The frequency
is comparable to that of the El Nino/La Nina events, which
have periods of 2—5 years. The El Nino events during the
simulation periods occurred during the years of 19911992,
1993, 1994, and 1997-1998, and the La Nina events
occurred during 1988-1989 and 1995-1996. It seems there
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are no clear matches in the timing between the peaks/valleys
of the SVD expansion coefficient series and the El Nino/La
Nina events.

5. Predictive Significance of SVD Patterns

[48] We have analyzed two features of the SVD modes,
that is, time lag correlation with soil moisture leading
precipitation, and autocorrelation of precipitation. Here we
compare with the corresponding features of original data
series and EOF patterns to further illustrate the significance
of the SVD pattemns for prediction of monthly-seasonal
precipitation variability.

5.1. Original Data Series

[49] The last panels of Figures 6 and 7 shows the time lag
absolute correlation coefficients between soil moisture and
precipitation, and the autocorrelation coefficients of soil
moisture or precipitation of original data series, respectively.
The method to obtain these coefficients are the same as those
for the panels a—d of the corresponding figure except that the
spatial average is made to the absolute values of the
coefficients over all locations. Note the difference between
the time lag correlation and autocorrelation as mentioned
above.

[s0] Although the simultaneous correlation coefficient
(zero lag month) of 40% is comparable to those of the
SVD leading modes, the correlation coefficients of the
original data series with soil moisture leading precipitation
by one month or longer are only about 15%. Meanwhile, the
autocorrelation coefficients of the original precipitation
series are much smaller than those of precipitation SVD
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Figure 9. Temporal variations of the expansion coeffi-
cients of the four SVD leading modes (from top to bottom).
The heavy and light lines represent soil moisture and
precipitation, respectively.
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expansion series. The one-month lag correlation coeffi-
cients, for example, are below 20% for the original data
series, in comparison with about 30-50% for the 1st—3rd
SVD modes.

[s1] This result suggests that, if using soil moisture and/or
precipitation as a predictor to forecast monthly-seasonal
precipitation variability, a better predictability could be
achieved by using the SVD patterns than original data at
individual locations. Statistical prediction models could be
developed on basis of the spatial patterns identified by the
SVD analysis. A number of techniques are available for
developing such models. One of them is to develop a
statistical model using SVD spatial patterns of soil moisture
as a predictor, similar to the method using CCA patterns
[Barnett and Preisendorfer, 1987, Barnston, 1994]. An
attempt was made in a recent study [Liu, 2003] to build
such a model and to provide predictive evidence for the
importance of the SVD soil moisture patterns in improving
predictability of monthly-seasonal precipitation. The model
is derived from a regression equation connecting the SVD
patterns of soil moisture and precipitation. Skill of the
model in predicting monthly and seasonal rainfall in the
monsoon region of east Asia is evaluated by using a cross-
validation method. The preliminary results do show some
improvement in the predictability. The results, on the other
hand, also indicate generally a low level of prediction skills.

[52] Another technique is ensemble forecast [Mo, 2002].
Soil moisture is used as one of predictors, together with sea
surface temperature and other elements. SVD is performed
for each predictor separately. An ensemble can be formed

using the predicted monthly-seasonal precipitation from
different predictors. This technique may have some advan-
tages over a model with soil moisture used as only predictor
and is expected to display better prediction skills.

[s3] Note that, there is not much difference in the time lag
correlation between precipitation and subsequent soil mois-
ture variability and in the autocorrelation of soil moisture
between the original data series and the SVD expansion
series. This suggests less importance of the SVD patterns
for prediction of monthly-seasonal soil moisture variability.

5.2. EOF Patterns

[s4] EOF is a technique similar to SVD in terms of its role
in identifying major spatial patterns. It has been extensively
used in meteorological and hydrological analyses. Wang
and Kumar [1998], for example, used EOF to analyze soil
moisture patterns and the effects on variability of the surface
climate in the United States. A difference from SVD is that
it is only applied to one field.

[ss] Figure 10 shows four leading EOF patterns of soil
moisture. The 1st EOF pattern displays negative anomalies
in the western China surrounded by positive ones in south,
east, and north. The 2nd EOF pattern consists of a positive
area in the north and a negative one in the south. The 3rd
EOF pattern roughly has two pairs of positive and negative
anomalies. And the last one is featured by dominant
negative anomalies. The four EOF patterns contribute about
50% to total variance (Table 2). Comparing these EOF
patterns with the four SVD patterns of soil moisture, it
seems that the 2nd EOF and the 1st SVD pattern are similar
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Table 2. Statistics of EOF Analysis®

Modes, S Modcs, P os, Yo op, % Tops Y0
1 3 22.3 7.0 19.0
2 1 12.9 11.3 29.5
3 4 10.7 6.6 18.4
4 2 4.6 8.5 352

35 and P represent soil moisture and precipitation, respectively. o is
covariance, and rg p is correlation coefficient of EOF cxpansion cocfficient
series between S and P,

to some extent. The 4th EOF and the 4th SVD pattern are
similar to each other but their signs of anomalies are
opposite (i.e., the 4th EOF has positive anomalies in a
region where the 4th SVD has negative anomalies and vise
verse).

[s6] There are many similarities between the corre-
sponding EOF patterns of precipitation (not shown) with
those of soil moisture, The related statistics of precipitation
EOF patterns is listed in Table 2. Note that, because the kth
(k=1,2, 3, 4) EOF modes of soil moisture and precipitation
do not necessarily correspond to each other, the order of the
precipitation modes have been changed to k=3, 1,4, 2 to
ensure that, in the new order, the kth mode of soil moisture
has a relatively larger correlation with the jth mode of
precipitation for j = k than j # k.

[s7] Figure 11 shows the time lag correlation coefficients
between soil moisture and precipitation of the EOF expan-
sion series. No correlation coefficient reaches the critical
correlation (30%) at the 99.9% confidence level except for
one case of precipitation leading soil moisture by one
month. In addition, the simultaneous correlation coefficients
of the EOF time series are 19—35%, only about 1/3 to 1/2 of
those for SVD. These results clearly indicate the advantage
of SVD over EOF patterns in connecting soil moisture to
subsequent precipitation variability.

6. Concluding Remarks

[s8] Singular value decomposition analysis has been
conducted to identify the soil moisture spatial patterns
closely related to monthly-seasonal precipitation variability
in east Asia. The two hydrological fields were obtained
from a simulation of a decade with the NCAR regional
climate model. The results provide some insights into the
importance of spatial patterns of soil moisture to prediction
of monthly-seasonal variability of precipitation in the mon-
soon region.

[59] The results suggest that the predictability of monthly-
seasonal precipitation variability could be improved by
using soil moisture as a predictor in the form of its coupled
SVD patterns with precipitation instead of the original data
at individual locations. The SVD spatial patterns of soil
moisture show much closer relationships with subsequent
monthly-seasonal precipitation variability than the original
data do. The relations in the form of SVD patterns are also
more significant than those in the form of EOF patterns.

[60] The leading SVD modes of soil moisture in east Asia
are categorized into two types according to their relation-
ships with the atmospheric anomalies. Only those SVD
patterns corresponding to the atmospheric anomalous pat-
terns with opposite signs between the middle and low
troposphere and with comparable magnitude in the anoma-
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lies over both middle latitudes and south-central China are
found to have close relations to subsequent monthly-sea-
sonal precipitation variability. The roles of this type of soil
moisture SVD patterns are more significant in spring and
summer seasons. To better understand physical significance
of these types of SVD patterns, numerical experiments with
a regional/global climate model are needed to investigate
the responses of precipitation to initial soil moisture anoma-
lies, with their spatial distribution specified based on the
SVD patterns.

[61] A reliable simulation of the land-atmospheric hydro-
logical processes is essential to understanding the impor-
tance of spatial patterns of soil moisture. As in other climate
models, precipitation simulation is one of the processes with
great uncertainties in RegCM. This certainly would further
affect the simulation of soil moisture and the land-atmo-
spheric interactions. Another uncertainty is from the snow
simulation with RegCM. The version of the model used in
this study [Giorgi et al., 1993a, 1993b] was not coupled
with an explicit snow scheme [e.g., Yang et al., 1997]. The
continuous efforts in developing parameterizations of pre-
cipitation and snow should be critical to improving simula-
tion of atmospheric and soil hydrological processes.

[62] No observational validations are available for the
simulated SVD spatial patterns of soil moisture in east Asia,
basically due to the lack of soil moisture measurements for
the simulation period (1988~1997). There are several soil
moisture data sets for China. The one used in the work of
Entin et al. [2000] and Liu et al. [2001] contains complete
time series over a period of 11 years, but it covers a different
period (1981-1991) from the simulation period. Another
data set [Liu et al, 1994] contains measurements at
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hundreds of stations over a decade-long period. However,
the data are discontinuous for northern China during cool
seasons due to frozen soil. An alternate data set available in
near future is the global soil moisture series calculated by
land-surface hydrological models with observed precipita-
tion from, e.g., the GEWEX/Global Land-Atmosphere Sys-
tem Study(GLASS) [Dirmeyer, 2002]. The application of
measured precipitation is expected to produce more reliable
soil moisture, though it is still a model product.

[63] SVD, similar to other principal component analysis
(CPA) techniques like CCA and combined CPA (CCPA),
identifies linear connections between two fields [Bretherton
et al., 1992]. The processes of soil moisture and precipita-
tion variability and their interactions, however, are basically
nonlinear, even at long-tem scales.
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